An interpretation and derivation of the lattice Boltzmann method using Strang splitting
نویسنده
چکیده
The lattice Boltzmann space/time discretisation, as usually derived from integration along characteristics, is shown to correspond to a Strang splitting between decoupled streaming and collision steps. Strang splitting offers a second-order accurate approximation to evolution under the combination of two non-commuting operators, here identified with the streaming and collision terms in the discrete Boltzmann partial differential equation. Strang splitting achieves secondorder accuracy through a symmetric decomposition in which one operator is applied twice for half timesteps, and the other operator is applied once for a full timestep. We show that a natural definition of a half timestep of collisions leads to the same change of variables that was previously introduced using different reasoning to obtain a second-order accurate and explicit scheme from an integration of the discrete Boltzmann equation along characteristics. This approach extends easily to include general matrix collision operators, and also body forces. Finally, we show that the validity of the lattice Boltzmann discretisation for grid-scale Reynolds numbers larger than unity depends crucially on the use of a Crank– Nicolson approximation to discretise the collision operator. Replacing this approximation with the readily available exact solution for collisions uncoupled from streaming leads to a scheme that becomes much too diffusive, due to the splitting error, unless the grid-scale Reynolds number remains well below unity.
منابع مشابه
An Ocean Circulation Model Based on Operator-Splitting, Hamiltonian Brackets, and the Inclusion of Sound Waves
This paper offers a simple, entirely prognostic, ocean circulation model based on the separation of the complete dynamics, including sound waves, into elementary Poisson brackets. For example, one bracket corresponds to the propagation of sound waves in a single direction. Other brackets correspond to the rotation of the velocity vector by individual components of the vorticity and to the actio...
متن کاملA Comparative Solution of Natural Convection in an Open Cavity using Different Boundary Conditions via Lattice Boltzmann Method
A Lattice Boltzmann method is applied to demonstrate the comparison results of simulating natural convection in an open end cavity using different hydrodynamic and thermal boundary conditions. The Prandtl number in the present simulation is 0.71, Rayleigh numbers are 104,105 and 106 and viscosities are selected 0.02 and 0.05. On-Grid bounce-back method with first-order accuracy and non-slip met...
متن کاملNatural Convection and Entropy Generation in Γ-Shaped Enclosure Using Lattice Boltzmann Method
This work presents a numerical analysis of entropy generation in Γ-Shaped enclosure that was submitted to the natural convection process using a simple thermal lattice Boltzmann method (TLBM) with the Boussinesq approximation. A 2D thermal lattice Boltzmann method with 9 velocities, D2Q9, is used to solve the thermal flow problem. The simulations are performed at a constant Prandtl number (Pr ...
متن کاملExternal and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method
The lattice Boltzmann method (LBM) has recently become an alternative and promising computational fluid dynamics approach for simulating complex fluid flows. Despite its enormous success in many practical applications, the standard LBM is restricted to the lattice uniformity in the physical space. This is the main drawback of the standard LBM for flow problems with complex geometry. Several app...
متن کاملSimulation of Micro-Channel and Micro-Orifice Flow Using Lattice Boltzmann Method with Langmuir Slip Model
Because of its kinetic nature and computational advantages, the Lattice Boltzmann method (LBM) has been well accepted as a useful tool to simulate micro-scale flows. The slip boundary model plays a crucial role in the accuracy of solutions for micro-channel flow simulations. The most used slip boundary condition is the Maxwell slip model. The results of Maxwell slip model are affected by the ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 65 شماره
صفحات -
تاریخ انتشار 2013